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The effect of a feedback control strategy on the onset of oscillatory convection in an infinite horizontal
layer of fluid with temperature-dependent viscosity is investigated theoretically using linear stability
analysis. It is shown that small viscosity variations stabilizes the fluid layer. Large controller gains, large
viscosity variations, and high surface tension, however, promote the onset of overstability leading to
oscillatory motions.
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1. Introduction

The time-dependent oscillatory state of Marangoni convection
is known to be the primary cause of detrimental striations in
the chemical composition of the final products in several ma-
terial processing technologies such as the semiconductor crystal
growth production. The role of thermocapillary (surface tension
driven) flow in the heat and mass transfer processes, the char-
acteristics of the transition from steady to oscillatory flow and
effective mechanisms to reduce or alter the oscillatory flow are
of fundamental and industrial interest. The pioneering works of
Bénard [1], Rayleigh [2] and Pearson [3] have been extended to
investigate comprehensively the behavior of the steady and oscilla-
tory instabilities driven by buoyancy (Bénard) and thermocapillary
(Marangoni) effects. Typically, in reduced gravity or in a sufficiently
thin layer of fluid, the thermocapillary forces are dominant [4].

The problems of the onset of oscillatory convection in the pres-
ence of external forces such as magnetic field and rotation have
been studied by many authors [5–10]. The effects of linear and
nonlinear control strategies on the steady and oscillatory stability
thresholds have been studied both experimentally and theoreti-
cally [13–19]. Bau [13] applied a linear control feedback to delay
the onset of convection and investigate the possibility of a bifurca-
tion through imaginary growth rate into oscillatory convection in
the case of flat free surface. For a liquid layer heated from below
with uniform temperature at the rigid wall, the oscillatory convec-
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tion cannot appear [13,20–22], but in [13] large controller gains
may induce oscillatory instabilities and have a destabilizing effect.
Experiments by Tang and Bau [16] revealed that at relatively large
controller gain, the controller itself introduced oscillatory behav-
ior which then increased the amplitudes of the oscillations. Or et
al. [17] employed a nonlinear feedback control strategy to delay
the onset and eliminate the subcritical long-wavelength instabil-
ity of Marangoni–Bénard convection. Or and Kelly [18] showed
that the weakly nonlinear flow properties in the Rayleigh–Bénard–
Marangoni problem can be altered by linear and nonlinear propor-
tional feedback control processes and the stabilization of the basic
state can be achieved. Remillieux et al. [19] delineated the mech-
anisms that lead to oscillatory Rayleigh–Bénard convection in the
presence of large controller gains and the application of derivative
controller to suppress oscillatory convection. Very recently, the ef-
fects of the combined rotation and feedback controller on the onset
of steady and oscillatory Marangoni instability have been investi-
gated in [10–12].

The dynamic viscosity in most fluids is generally sensitive to
temperature variations which can also influence heat transport
and the spatial structure of the fluids [23]. Furthermore, variable-
viscosity fluids are less stable than a constant-viscosity fluid. The
destabilizing effect of linear viscosity variation has been investi-
gated in [24,25] for steady and oscillatory instabilities. However,
liquids such as silicone oils and glycerol have strong viscosity vari-
ations which are usually well described by exponential laws and
significantly alter the convective instabilities [22,26–32]. Slavtchev
et al. [22] studied the influences of viscosity variation and de-
formable free surface on oscillatory instabilities, and found that in
the case of a constant heat flux from below, oscillatory instability
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Nomenclature

d initial thickness of the liquid layer
Bi Biot number
Bo Bond number
Cr Crispation number
D differentiation with respect to z
f (z) function related to viscosity variation
g gravitational acceleration
h heat transfer coefficient
K controller gain
Ma Marangoni number
N viscosity parameter
Pr Prandtl number
T (z) temperature

W (z) vertical variation of velocity perturbation
z vertical coordinate
Z magnitude of free surface deflection

Greek symbols

α total wave number
β,ε,γ constants
χ thermal diffusivity
λ thermal conductivity
μ dynamic viscosity
ν kinematic viscosity
ω time growth rate
ρ density of the fluid
σ surface tension
Θ(z) vertical variation of temperature perturbation
is expected to appear in medium viscous fluids having low surface
tension. Awang Kechil and Hashim [33] applied the feedback con-
trol to overcome the destabilizing effect of viscosity variation and
delay the onset of steady Marangoni convection.

In this paper, we extend the work of Slavtchev et al. [22] to
include the effect of feedback control. We use classical linear sta-
bility analysis and obtain analytical solution for the Marangoni
problem in a variable-viscosity fluid layer subject to a constant
temperature at the lower boundary in the presence of a thermal
feedback control. We investigate the possibility of suppressing or
promoting oscillatory instabilities through the thermal feedback
controller. The roles of physical parameters on the onset of oscilla-
tory instability are also assessed.

2. Mathematical formulation

Consider the convective flow in a horizontal layer of incom-
pressible viscous, heat-conducting fluid on a rigid plate with free
upper surface. The surface tension σ and the dynamic viscosity μ
are assumed to vary linearly and exponentially, respectively, with
temperature,

σ = σ0 − ε(T − T0), (1)

μ = μ0 exp
[−γ (T − T0)

]
, (2)

where T is the fluid temperature, σ0 and μ0 are values at a refer-
ence temperature T0, and γ and ε are positive constants. All other
physical properties of the fluid are assumed constant. The bottom
boundary is subjected to a no-slip condition and a uniform tem-
perature or the so-called “conducting” case.

The linearized dimensionless momentum and heat transfer
equations governing the perturbed state for variable-viscosity fluid
obtained by Kalitzova-Kurteva et al. [29] are given by

f (z)
[(

D2 − α2 + N2 + 2N D
)(

D2 − α2) + 2N2α2]W

= Pr−1ω
(

D2 − α2)W , (3)[
ω − (

D2 − α2)]Θ = −W . (4)

The boundary conditions at the two boundaries comprise of,

W (0) = DW (0) = 0, (5)

W (1) + ωZ = 0, (6)

f (1)
[(

D2 − 3α2)DW (1) + N
(

D2 + α2)W (1)
] + α2(Bo + α2)Z

Cr

= Pr−1ωDW (1), (7)
f (1)
(

D2 + α2)W (1) − α2Ma
[
θ(1) − Z

] = 0, (8)

DΘ(1) + Bi
[
Θ(1) − Z

] = 0. (9)

We set the boundary condition for the uniform temperature at
the bottom boundary to include the controller rule and following
Bau [13], we use a thermal feedback control mechanism to modify
the heated surface temperature in proportion to the deviation of
the fluid’s temperature from its conductive value. The new bound-
ary condition with the controller gain K is

Θ(0) + KΘ(1) = 0. (10)

The operator D = d/dz denotes differentiation with respect to the
vertical coordinate z. W = W (z), Θ = Θ(z) and Z are the ver-
tical variation of the velocity, temperature and the magnitude of
the free surface deflection of the linear perturbations to the basic
state, respectively, with α is the total wave number and ω is the
complex growth rate. The function f (z) = μ/μ0 is related to the
viscosity variation N [29],

f (z) = exp

[
N

(
z − 1 + T0 − Ts

βd

)]
, (11)

where d is the depth of the liquid layer and Ts is the temperature
at the free surface, where Ts = T w − βd is the temperature of the
undisturbed state. If the reference temperature is the temperature
at the free surface, T0 = Ts and f (z) = exp(N(z − 1)).

The dimensionless parameters appearing in the problem are
the Marangoni number Ma = εβd2/(χμ0), the Prandtl number
Pr = μ0/(ρχ), the Crispation number Cr = χμ0/(σ0d), the Bond
number Bo = ρgd2/σ0, the Biot number Bi = hd/λ and the viscos-
ity parameter N = γ βd, where β is a positive constant, ρ is the
density of the fluid, λ is the thermal conductivity, χ is the ther-
mal diffusivity, h is the heat transfer coefficient between the liquid
and gas phases and g is the gravitational acceleration.

3. Solution to linearized equations

The system (3)–(10) is solved analytically using the symbolic al-
gebra package MAPLE to find Ma that determines the critical value
for the onset of convection. The solutions for the amplitudes W (z)
and Θ(z) are in the form of hypergeometric functions in powers
of ω exp(−Nz)/(NPr) with series representations [22]

W (z) =
4∑

j=1

A j exp(a j z)
∞∑

n=0

Bn, j exp(−nNz), (12)
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Table 1
The difference |Sk − S j |, j < k, for Ma when K = 11, N = 0.1, Cr = 0.001, α = 0.5,
Pr = 10, Bo = 0.1, Bi = 0.1, and ω = 0.5i.

|Sk − S j | Numerical difference

|S10 − S5| 0.298461 × 10−4 + 0.287096i × 10−3

|S15 − S10| 0.510005 × 10−5 + 0.236075i × 10−4

|S20 − S15| 0.386114 × 10−8 + 0.966914i × 10−9

|S25 − S20| 0.384639 × 10−16 + 0.139882i × 10−15

|S30 − S25| 0.8212 × 10−25 + 0.170212i × 10−25

|S30 − S29| 0.1398 × 10−25 + 0.617204i × 10−25

Θ(z) =
4∑

j=1

A j exp(a j z)
∞∑

n=0

Cn, j exp(−nNz)

+ A5 exp
(√

ω + α2z
) + A6 exp

(−√
ω + α2z

)
, (13)

where

a1 = − N

2
+ k1 + ik2, a2 = − N

2
+ k1 − ik2,

a3 = − N

2
− k1 + ik2, a4 = − N

2
− k1 − ik2, (14)

with

k1 = 1

4

(
2k + 2N2 + 8α2)1/2

, (15)

k2 = 1

4

(
2k − 2N2 − 8α2)1/2

, (16)

k = (
N4 + 24α2N2 + 16α4)1/2

. (17)

The coefficients of the series (12) and (13) are

B0, j = 1, (18)

Bn+1, j = 1

(n + 1)!
(

ω

NPr

)n+1 Q 1, j Q 2, j · · · Q n+1, j

R1, j R2, j · · · Rn+1, j
, (19)

Cn, j = Bn, j

(a j − nN)2 − (ω + α2)
, (20)

with

Q n+1, j = (a j − nN)2 − α2, (21)

Rn, j = − 4a3
j + 6a2

j (n − 1)N

+ 2a j
[
2α2 − (n − 1)(2n − 1)N2]

+ [
n(n − 1)N2 − 2α2](n − 1)N. (22)

We computed the solution from the series (12) and (13) using
n = 30 with the MAPLE variable Digits controlling the num-
ber of significant digits set to 32 (see [22]). The coefficients A j

( j = 1,2, . . . ,6) and the expressions for Z and Ma are searched
subject to the boundary conditions (5)–(10). The coefficient A1 is
found to be arbitrary. The series converge quickly as n increases,
for example, Table 1 shows the numerical values |Sk − S j |, j < k,
for Ma where Sk denotes the summation of the series up to n = k
when K = 11, N = 0.1, Cr = 0.001, a = 0.5, Pr = 10, Bo = 0.1,
Bi = 0.1, and ω = 0.5i.

The analytical solution above is based on the reference viscosity
at the free surface μ0 = μs . Since a variable-viscosity fluid is more
stable than fluid with viscosity μw (viscosity at the wall) and less
stable than a fluid with viscosity μs (viscosity at the free surface)
[22,28], we use the mean value of the viscosities at both bound-
aries μ = (μs + μw)/2. Therefore, the mean Marangoni number
Ma and the corresponding mean Crispation number Cr can be de-
termined by the relations [22],
Ma = 2Ma

1 + exp(−N)
, (23)

Cr = Cr[1 + exp(−N)]
2

, (24)

and the marginal stability curves for both steady and oscillatory
convection are plotted from Ma = Ma(α,ω, N,Bi,Bo,Cr,Pr). The
effects of controller gain and viscosity variation on the onset of
convection are assessed based on the marginal stability curves. The
critical parameter values for the situations when steady and oscil-
latory modes coexist and the bifurcation to oscillatory from steady
for nondeformable surface will be determined.

4. Results and discussion

In this section, we present the results graphically to show the
effects of the controller gain K , the viscosity parameter N , the
Prandtl number Pr and the Crispation number Cr on the steady
and oscillatory marginal curves for nondeformable surface, Cr = 0,
and deformable surface Cr �= 0. We consider the effects of the
parameters on the time-dependent instability in the case of con-
stant temperature at the rigid plate or the so-called conducting
case. The stability state is determined by the Marangoni num-
ber Ma = Mar + iMai and the growth rate ω = ωr + iωi , where
ωr = Re(ω) and ωi = Im(ω). ωr is set to zero for the stability to
be at the marginal state in which disturbances are neither ampli-
fied nor damped, and the convection sets in as stationary motion
if ωi = 0 or as oscillatory motion if ωi �= 0. We consider the phys-
ical parameters values in the ranges: 0 � Cr � 0.01, 0 < N � 8,
10 � Pr � 1000, 0 � Bi � 0.1 and 0 � Bo � 0.1. Note that N = 8
corresponds to fluids with large viscosity variation such as glycerol
[22,27].

Slavtchev et al. [22] solved the special case of uncontrolled sys-
tem (K = 0) and constant temperature at the wall for the steady
and oscillatory convection. They only found stationary instability.
The nontrivial solution for the time-dependent instability has neg-
ative Marangoni number which means that the oscillatory insta-
bility cannot appear if the heating is from below [13,21,22]. Set-
ting K = 0, Cr = 0 and N = 0, the system (3)–(10) reduces to the
Marangoni problem of Pearson [3] and one recovers the Marangoni
problem of Takashima [21,20] when K = 0 and N = 0. Bau [13]
studied the effect of a feedback control on Marangoni convec-
tion of [3] for constant viscosity N = 0 and nondeformable surface
Cr = 0, and found that in the case of oscillatory instability, large
controller gains have a destabilizing effect.

4.1. Nondeformable surface

For a nondeformable surface and a constant temperature at the
rigid wall with a feedback controller, the characteristics of the
steady and oscillatory instabilities are illustrated in Figs. 1–5.

Fig. 1 shows the locus of (ωr,ωi ) curves that satisfy the con-
dition Mai = 0. If ωr < 0 oscillatory modes decay in time and if
ωr > 0 the oscillatory disturbances grow. Each point on the curve
is associated with a Marangoni number Ma = Mar of either pos-
itive, negative or zero value. Some values of Ma are indicated by
circles at several points on the curves. As K increases, the curve
moves upwards and evidently, increasing the controller gain K
induces oscillatory convection. The curve for α = 0.1, K = 10 is
above the curve for α = 1.0, K = 10 and therefore long wave-
lengths are less stable than shorter wavelengths.

Fig. 2 depicts the steady and oscillatory curves for N = 1 for
several values of K . The critical Marangoni numbers Mac are
marked by solid circles which determine the global minima of the
steady and oscillatory curves. The steady curve for K = 11.6 is not
plotted since it does not differ visibly from the steady curve for
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Fig. 1. Locus of (ωi ,ωr ) curves for several values of K and α when Mai = 0, Pr = 10,
N = 1 and Bi = Bo = Cr = 0.

Fig. 2. Marginal curves for steady (solid lines) and oscillatory (dashed lines) for sev-
eral K when N = 1, Bi = Cr = Bo = 0 and Pr = 10. Global minima (critical Marangoni
numbers Mac ) are marked by solid circles.

Fig. 3. Steady (solid lines) and oscillatory (dashed lines) marginal curves for several
N when Pr = 10, Bi = Cr = Bo = 0 and K = 10.

K = 11.5. In the case of oscillatory curves for nondeformable sur-
face, we observed similar oscillatory behavior for variable viscosity
in comparison to constant viscosity, cf. Bau [13]. We note that Mac

is on the steady marginal curve for K = 10 and on the oscillatory
curves for K = 11 and K = 11.5. When K = 11.6 there is no crit-
ical Marangoni number and the system is unstable at all positive
Marangoni numbers.

As shown in Fig. 3, for N = 3, N = 5 and N = 8 with the
other parameters values fixed, oscillatory instabilities can occur.
The critical Marangoni number for the case N = 1 is higher than
the critical values for N = 0.18 and N = 0. It shows that constant
viscosity fluids are less stable than fluids with small viscosity vari-
Fig. 4. Steady and oscillatory marginal curves for Pr = 10,1000 when N = 1, Bi =
Cr = Bo = 0 and K = 10,11.5.

Fig. 5. Critical values of K B when bifurcation from steady to oscillatory convection
starts and Kc when both steady and oscillatory modes occur for the case Bi = Cr =
Bo = 0 and Pr = 10.

ation. Thus, small viscosity variation has a stabilizing effect but
further increment of the viscosity parameter N has a destabiliz-
ing effect. For a fixed value of K , there exists a critical value Nc
to mark the coexistence of steady and oscillatory modes. A fixed
value of controller gain definitely cannot maintain the stationary
stability for all viscosity groups.

In Fig. 4 we observe that increasing Pr or K shifts the oscil-
latory curves downwards. When K = 10, the steady convection is
preferred and when K = 11.5 oscillatory convection dominates.

As K increases, steady convection is delayed but eventually
when the value of the controller gain is large enough, bifurca-
tion to oscillatory instability starts to appear. The line K B in Fig. 5
shows the critical value of K when the oscillatory curve starts to
bifurcate from the stationary curve. Bifurcation to oscillatory mode
starts at a larger K for large N . For a fixed N , a further incre-
ment in K will shift the global minimum on the steady curve
to the oscillatory curve. Hence, there is another critical value, we
denote as Kc , at which the oscillatory and steady instabilities oc-
cur simultaneously. The line Kc in Fig. 5 separates the regions
in which stationary or oscillatory convection is preferred. When
K < Kc convection is steady for all N and when K > Kc convec-
tion is oscillatory. Kc decreases as N increases, hence, oscillatory
instability dominates at a smaller K for large N . Therefore, in the
cases investigated, one has to choose K < Kc to prevent the occur-
rence of oscillatory instability and to stabilize the system.

4.2. Deformable surface

For the uncontrolled system of Marangoni problem for the con-
ducting case considered by Bau [13] with constant viscosity and
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(a)

(b)

Fig. 6. Steady (solid lines) and oscillatory (dashed lines) marginal curves (a) N = 1
and (b) N = 3 for various K when Pr = 10, Bi = Bo = 0.1 and Cr = 0.001.

Slavtchev et al. [22] for variable viscosity, the oscillatory instabil-
ities cannot appear. Bau [13] only considered the case of flat free
surface for oscillatory convection and demonstrated that large con-
troller gains promote oscillatory instabilities. In this section, we
present the results for the controlled system (3)–(10) for the case
of deformable surface.

Fig. 6 shows the steady and oscillatory marginal curves for
various K when N = 1 and N = 3. The global minima are at
α = 0. However, in practical situations in which the fluid layer is
confined in a finite size container, the admissible wave numbers
are nonzero. Thus, when one considers the critical values in the
shorter wavelength regions (α > 0), it can be observed that for
small values of K , only steady convection appears but bifurcations
to oscillatory convection occurs for relatively large K , for exam-
ples K = 12 and K = 13 for both N = 1 and N = 3. Large controller
gains have a destabilizing effect with respect to oscillatory insta-
bilities.

As depicted in Fig. 7, for the cases of viscosity group considered,
when K = 10 only stationary convection sets in and oscillatory
curves disappear as N increases. Similarly, as observed in the case
of nondeformable surface, the minimum of the oscillatory curve for
N = 0 is less than the minimum for N = 0.18 and N = 1. Small vis-
cosity variation stabilizes the liquid layer at shorter wavelengths.
When K = 12, oscillatory convection dominates and for N = 6, the
minimum at the shorter wavelength is less than the minimum at
the long wavelength. Therefore, for large K and large N , the oscil-
latory instability favors shorter wavelengths.

Figs. 8 and 9 illustrate the characteristics of the oscillatory
marginal profiles for variations of Pr and Cr, respectively. In Fig. 8,
large Pr and large K inhibit oscillatory convective motions. As
shown in Fig. 9, the effect of increasing Cr is to increase the min-
(a)

(b)

Fig. 7. Steady (solid lines) and oscillatory (dashed lines) marginal curves (a) K = 10
and (b) K = 12 for various N when Pr = 10, Bi = Bo = 0.1 and Cr = 0.001.

Fig. 8. Steady (solid line) and oscillatory (dashed lines) marginal curves for Pr =
10,1000 when N = 1, Bi = Bo = 0.1, Cr = 0.001 and K = 10,12.

ima of the oscillatory marginal curves but to decrease the global
minima of the steady curves. At shorter wavelengths, low Crispa-
tion number induces oscillatory instability. Hence, large controller
gains and low Crispation number have destabilizing effects on os-
cillatory instabilities.

5. Conclusions

The effect of a feedback control strategy on the onset of os-
cillatory convection in an infinite horizontal layer of fluid with
temperature-dependent viscosity has been investigated theoreti-
cally using linear stability analysis. In the case of a nondeformable
surface, large controller gain and large viscosity variation induce
oscillatory instability. In the case of a deformable surface, the os-
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Fig. 9. Steady (solid line) and oscillatory (dashed lines) marginal curves for various
Cr when N = 1, Pr = 10, Bi = Bo = 0.1 and K = 12.

cillatory convection sets in liquids with high surface tension (weak
surface deformation), large viscosity variation, and large controller
gains. Prandtl number also plays a role in destabilizing the liquid
layer. Small controller gains of the thermal feedback control are
effective in controlling the onset of steady and oscillatory insta-
bilities, while large controller gains strongly influence the thermo-
physical properties of the liquid layer which significantly alter the
convective flows and induce oscillatory instabilities.
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